

Welcome to OPETH’s documentation!

OPETH documentation

	Getting started
	Quickstart

	Installation

	Running from sources

	Using OPETH
	Connecting OPETH to Open Ephys

	OPETH graphical interface

	Spike detection

	Architecture overview
	Data acquisition: Open Ephys ZMQ plugin

	Open Ephys - OPETH interface

	OPETH GUI overview

Contributors

Developed by Andras Szell (szell.andris@gmail.com) and other Hangyalab members (http://hangyalab.koki.hu/).

Open Ephys ZMQ plugin connection is based on
sample python scripts [https://github.com/MemDynLab/ZMQInterface/tree/master/python_clients] created by Francesco Battaglia.

License

GNU General Public License v3.0 or later.

See LICENSE [https://github.com/hangyabalazs/opeth/blob/master/LICENSE] for the full text.

For developers

	Module Index

Getting started

Detailed user guide: Using OPETH

Online Peri-Event Time Histogram for Open Ephys [http://www.open-ephys.org/gui].

OPETH visualizes Peri-Event Time Histograms (PETH) of spikes detected in raw Open Ephys data,
broadcasted via ZeroMQ [https://zeromq.org]. PETH is aligned to triggers from Open Ephys.

Quickstart

	OPETH requires ZMQInterface plugin [https://github.com/open-ephys-plugins/ZMQPlugins/tree/master/ZMQInterface].
It is part of Open Ephys from version 0.4.6 up.

	Set up Open Ephys with ZMQInterface plugin. The ZMQ plugin is recommended to be put after bandpass
filter and/or common average reference filter in the Open Ephys signal chain, while spike detector filter is not required.

	Start with the opeth command when using the pip package or start with python opeth/gui.py when running from sources (see below).

Installation

Simplest way is to install the opeth package for Python 2.7 or Python <=3.7 with pip:

pip install opeth

Then start with:

opeth

(Python 3.8 support is partially broken until the release of pyqtgraph 0.11.)

Dependencies

Required non-default packages: pyzmq, pyqtgraph plus one of the qt versions for pyqtgraph, preferably PyQt5,
and also their dependencies (e.g. numpy).

Running from sources

After cloning the git repository or extracting a source zip file, multiple methods could work.

Setting up python environment with conda

Conda builds are not available yet.

Using conda/miniconda, create an opeth environment issuing the following command in the root dir of opeth:

conda env create --file environment.yml

which will install all necessary prerequisites for Python 3.7.

Activate the new environment with the command

conda activate opeth

and once activated, you may start OPETH with

python opeth/gui.py

Using python 3.8 is not recommended (Feb 2020) as some bugs are to be addressed (most probably residing in pyqtgraph),
but it is possible with the conda-forge version of pyqtgraph (default environment name will be opeth_python38):

conda env create --file env38.yml

Setting up python environment with pip

Python 3.7 dependencies can be installed with the command

pip install -r requirements.txt

Using OPETH

This online documentation is associated with pre-print ‘OPETH: Open Source
Solution for Real-time Peri-event Time Histogram Based on Open Ephys’ by
András Széll, Sergio Martínez-Bellver, Panna Hegedüs and Balázs Hangya.
DOI: https://doi.org/10.1101/783688.

OPETH was tested under Windows only. Feedback is welcomed for other platforms.

Connecting OPETH to Open Ephys

OPETH relies on data and events recorded and timestamped by Open Ephys. These
data are broadcasted by Open Ephys through the ZMQ Interface plugin.

	Signal conditioning/filtering should be performed by Open Ephys, therefore
the ZMQ plugin should be placed after appropriate filters. E.g. Band-pass
filtering between 600-6000 Hz enables threshold-based action potential detection.

	Spikes are detected by OPETH, so a spike filter plugin in OE is unnecessary
for OPETH.

Sample OE signal chain for ZMQ broadcasting:

[image: _images/oe_plugins.png]
OPETH connects to the local data and event ports of the ZMQ plugin. It is
possible to run multiple OPETH instances with different settings
simultaneously. (Connecting over the network could also be possible but not
implemented in the GUI currently.)

It is recommended to have Open Ephys set up and started before running OPETH.

OPETH graphical interface

The GUI consists of three different type of windows currently:

	Main histogram window: The main window displays histograms, parameters and
buttons for handling the configuration and the different plots.

	Raw analog data window: real time data view displays data arriving from
Open Ephys, used for debugging (e.g. to determine whether spikes are absent
due to triggering issues or because of data content).

	Spike analysis windows: Opened from main window. Displays detected spikes
for a single channel for visual spike/artefact observations.

Online Peri-event Time Histogram (main window)

A view of an actual recording session performed with OPETH with PETHs on
the left side and UI buttons/params on the right:

[image: _images/gui_main.png]
Synthetic data and parameters close-up with tetrode #1 displaying channel 1,
tetrode #2 displaying ch 6 and 7 only:

[image: _images/gui_params.png]
The histograms are pyqtgraph elements so by dragging their title they can be
rearranged or by double clicking even detached from the main window.

Parameter description:

	Sampling rate: should match Open Ephys Rhythm FPGA settings.
(Will be read-only after fixing a bug preventing accessing this info.)

	Event trigger channel: the OE trigger channel. Can be a TTL pulse source
e.g. PulsePal or BPOD event triggers. (Technically non-TTL signals can also
be reported by OE as timestamped event.)

	Channels per plot: channels are collected in groups of four by default
as for classical tetrode recordings, but can be set from 1 to 8 (for single
electrodes, stereotrodes etc.) Changing it automatically changes the number
of histograms displayed.

	Disabled channels: disable channels that are not to be spike-filtered,
e.g. noisy or inactive channels. See screenshot for accepted formats.
OPETH automatically disables and hides the extra 3 gyroscope channels of a
32 or 64 channel setup if 35/70 channels are detected (if not desired,
change behaviour with opeth.gui.HIDE_AUX_CHANNELS).

	ROI before/after event: region of interest around trigger. Only this
part of the analog data is spike filtered.

	Histogram color:

	flat histogram merges spikes from all channels of the given tetrode

	aggregate (default) view displays channels in distinct colors but
in the same histogram bin,

	channels display a line plot for each channel separately.

	Spike threshold: threshold level can be applied globally or per channel.
By default negative spikes are detected and the threshold levels in GUI are
considered absolute value.

If multiple triggers fall within the ROI, the same spikes may be detected for
the triggers in the overlapping part.

Plot handling buttons:

	Clear plot: clears histogram windows.

	Invert colours: switch between black and white background for histogram
plots. (Experimental.)

	Open new spike win: initiate new spike analysis window.

Parameters can be saved and loaded into ini files, last used file is remembered
and reloaded upon startup.

Configuration handling buttons:

	Save/Save as: store current configuration into file.

	Load: open a different configuration when changing to a different
experimental project.

	Reset: restore defaults.

Raw data window

Displays data received directly from Open Ephys, allowing low-level
visualization of input for debugging.

	Channels are auto-scaled and do not provide information on actual voltage levels yet.

	The top half of the window is a rolling display that plots all channels simultaneously.
To zoom in, hold right mouse button and move the mouse.

	The plot is updated at a low frame rate and the data displayed are downsampled to 1000 Hz.

	The bottom part has a stimulus counter and presents analog data aligned to the trigger stimuli.

	Window boundaries with respect to the trigger are set by the ROI before event
and ROI after event parameters.

	Can be closed if not required for debugging.

When the stimulus counter is not incrementing, no triggers are received and
thus no spike detection will be performed (-> histograms not updated).

Spike analysis window

Spike windows are opened pressing the Open new spike win button. By opening
multiple spike windows it is possible to compare channels side by side,
but too many open windows will result in poor performance.

[image: _images/spike_view.png]
The window consists of two plot parts: the top part shows the raw input around
the event, and the bottom part displays the detected spikes within the ROI of
the event. The spike position is marked with a red dot in the bottom plots.
These spikes are overlaid in the top plot in color and make it easy to
differentiate valid spikes from false positives. It is possible to zoom in/out
holding down the right mouse button in the spike windows.

Each spike window displays data for a single channel. The channel
number can be adjusted real-time.

If the Update only on spike option is selected, spike windows are updated
when new spikes are detected within the ROI of the trigger; otherwise, spike
windows are updated 5 times per second even when no spikes are present.

Spike detection

OPETH performs simple spike detection with threshold crossing detection. No
spike sorting or artefact removal is performed.

Architecture overview

This online documentation is associated with pre-print ‘OPETH: Open Source
Solution for Real-time Peri-event Time Histogram Based on Open Ephys’ by
András Széll, Sergio Martínez-Bellver, Panna Hegedüs and Balázs Hangya.
DOI: https://doi.org/10.1101/783688.

Data acquisition: Open Ephys ZMQ plugin

Data acquisition and signal conditioning is performed by Open Ephys. OPETH
implements spike thresholding itself, therefore a Spike Detector plug-in
should not be included before the ZMQ interface. OPETH receives data from
OE’s ZeroMQ interface plugin. The plugin broadcasts recorded data and events
that can be subscribed to by external applications. Timestamps accompanying
these data and event packets are the sample index, which will get converted
to actual timestamp based on current sampling rate.

The ZMQ Interface plugin opens a ZMQ publisher socket to allow one or more
ZMQ clients to subscribe (connect) locally or over the network. Though the
system is typically used with a single client connected locally, it is
possible to use multiple OPETH clients on one or more PCs analyzing
the same Open Ephys data source simultaneously with different settings.

The ZMQ plugin uses JSON format data packets for the digitized data and
event metadata (e.g. timestamp, event channel, number of data channels and
sample count). Another socket for event messages and responses is used
for heartbeat messages to notify the plugin about the connected clients.
(Possibly for listing them on ZMQ plugin interface.)

Open Ephys - OPETH interface

Input data arriving from Open Ephys is handled by opeth.comm, which
takes care of parsing the JSON structures containing the measurement samples
and trigger events. Depending on the type of the parsed input data, trigger
events are stored in OpenEphysEvent objects (defined in openephys.py) and
sample data are stored directly in a 2D circular (or rolling) buffer
implemented in opeth.circbuff; the data flow is managed by the
opeth.colldata.Collector class in opeth.colldata.py.
(The opeth.openephys and some of the opeth.comm interface
routines are based on the python samples created by Francesco Battaglia.)

The following figure summarizes the main data flow of OPETH:

[image: _images/dataflow.png]

OPETH GUI overview

Display windows currently available:

	Main histogram / parameter setup

	Raw analog data debug

	Spike analysis window (opened by the Open new spike win button)

At startup, two windows are opened by default: the main histogram window
displaying the online PETH results, and a raw analog data plot for debugging.
The spike analysis window is a third view that makes it possible to visually
differentiate between spikes and artefacts.

Histogram window

The main GUI window is implemented in opeth.gui, which schedules data
reading, spike discrimination, performs histogram calculation and enables the
adjustment of parameter setup.

Raw analog data window

In the interest of CPU time, the plot is updated at a low frame rate and the
data displayed are downsampled to 1000 Hz for this view.
Instead of relying on pyqtgraph’s downsampling capabilities a different one
was used. The raw debug display was implemented in opeth.gui.GuiClass.update(), with min-maxed
data downsampling in opeth.colldata.DataProc.compress().

Spike analysis window

Spike windows opened from the main histogram window and are handled by
opeth.spike_gui.
Multiple Spike windows can be displayed simultaneously, but this is CPU
intensive.

Logging

Log files are created automatically.

Configuration

Last used configuration file name is stored in the file lastini.conf.
Configurations are stored in the ini file format, and parsed by the
configparser [https://docs.python.org/3/library/configparser.html] module.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 opeth	

 	
 	
 opeth.circbuff	
 Ring/circular buffer implementation for multidimensional data.

 	
 	
 opeth.colldata	
 Storage array and support funtions for the collected raw data.

 	
 	
 opeth.comm	
 Communication interface between Open Ephys and Python.

 	
 	
 opeth.gui	
 Main user interface class starting all the high level scheduled tasks.

 	
 	
 opeth.logsetup	
 Logging module setup.

 	
 	
 opeth.openephys	
 Open Ephys event and spike containers.

 	
 	
 opeth.pgext	
 Extension classes for pyqtgraph.

 	
 	
 opeth.spike_gui	
 Per-channel spike analysis window (opens on button click)

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_data() (opeth.colldata.Collector method)

 	(opeth.comm.CommProcess method)

 	add_event() (opeth.comm.CommProcess method)

 	add_spike() (opeth.colldata.Collector method)

 	(opeth.comm.CommProcess method)

 	
 	add_ttl() (opeth.colldata.Collector method)

 	append() (opeth.circbuff.CircularBuffer method)

 	AUTOTRIGGER_CH (in module opeth.gui)

 	autottl() (opeth.colldata.DataProc method)

C

 	
 	change_event_roi() (opeth.gui.GuiClass method)

 	channel_cnt() (opeth.colldata.Collector method)

 	ChannelParameter (class in opeth.pgext)

 	ChannelParameterItem (class in opeth.pgext)

 	CHANNELPLOTS_ANTIALIASED (in module opeth.gui)

 	CHANNELPLOTS_VERTICAL_OFFSET (in module opeth.gui)

 	CHANNELS_PER_HISTPLOT (in module opeth.gui)

 	CircularBuffer (class in opeth.circbuff)

 	clear_plot() (opeth.gui.GuiClass method)

 	close() (opeth.spike_gui.SpikeEvalGui method)

 	Collector (class in opeth.colldata)

 	
 	collector (opeth.comm.CommProcess attribute)

 	colorChange() (opeth.pgext.ChannelParameterItem method)

 	COLORS (opeth.spike_gui.SpikeEvalGui attribute)

 	COLUMN_INCREMENTS (in module opeth.gui)

 	CommProcess (class in opeth.comm)

 	compress() (opeth.colldata.DataProc method)

 	configfname (opeth.gui.GuiClass attribute)

 	connect() (opeth.comm.CommProcess method)

 	context (opeth.comm.CommProcess attribute)

 	convert_strlist_to_ints() (opeth.gui.GuiClass method)

 	cp (opeth.gui.GuiClass attribute)

D

 	
 	dark (opeth.gui.Theme attribute)

 	data_at_ttl (opeth.gui.GuiClass attribute)

 	data_socket (opeth.comm.CommProcess attribute)

 	data_ts (opeth.gui.GuiClass attribute)

 	data_ts_0 (opeth.gui.GuiClass attribute)

 	data_ts_roi (opeth.gui.GuiClass attribute)

 	databuffer (opeth.colldata.Collector attribute)

 	dataport (opeth.comm.CommProcess attribute)

 	DataProc (class in opeth.colldata)

 	dataproc (opeth.gui.GuiClass attribute)

 	DEBUG (in module opeth.gui)

 	DEBUG_FPS (in module opeth.gui)

 	DEBUG_FPSREPORT_PERIOD (in module opeth.gui)

 	DEBUG_TIMING (in module opeth.gui)

 	
 	debugwin (opeth.gui.GuiClass attribute)

 	DEFAULT_INI (in module opeth.gui)

 	DEFAULT_SPIKE_THRESHOLD (in module opeth.gui)

 	disabled_channels (opeth.gui.GuiClass attribute)

 	DisabledMouseViewBox (class in opeth.pgext)

 	display_brushcolors (opeth.gui.GuiClass attribute)

 	display_linecolors (opeth.gui.GuiClass attribute)

 	display_theme (opeth.gui.GuiClass attribute)

 	downsampling_rate (opeth.gui.GuiClass attribute)

 	drop() (opeth.circbuff.CircularBuffer method)

 	drop_aux (opeth.colldata.Collector attribute)

 	drop_before() (opeth.colldata.Collector method)

 	dtype (opeth.circbuff.CircularBuffer attribute)

 	dump() (opeth.gui.TimeMeasClass method)

E

 	
 	earliest_hist_plot (opeth.gui.GuiClass attribute)

 	earliest_plot (opeth.spike_gui.SpikeEvalGui attribute)

 	earliest_rawttl_plot (opeth.gui.GuiClass attribute)

 	EVENT_ROI (in module opeth.colldata)

 	
 	event_roi (opeth.gui.GuiClass attribute)

 	event_socket (opeth.comm.CommProcess attribute)

 	event_types (opeth.openephys.OpenEphysEvent attribute)

 	eventport (opeth.comm.CommProcess attribute)

F

 	
 	FileLogFormatter (class in opeth.logsetup)

 	fname (opeth.gui.GuiClass attribute)

 	
 	force_update (opeth.gui.GuiClass attribute)

 	format() (opeth.logsetup.FileLogFormatter method)

 	(opeth.logsetup.LogFormatter method)

G

 	
 	generate_ttl() (in module opeth.openephys)

 	get_data() (opeth.colldata.Collector method)

 	
 	get_ts() (opeth.colldata.Collector method)

 	GuiClass (class in opeth.gui)

H

 	
 	handle() (opeth.logsetup.LogHandler method)

 	has_data() (opeth.colldata.Collector method)

 	
 	HIDE_AUX_CHANNELS (in module opeth.gui)

 	HISTOGRAM_BINSIZE (in module opeth.gui)

 	histplots (opeth.gui.GuiClass attribute)

I

 	
 	in_ipython() (in module opeth.logsetup)

 	init_debugwin() (opeth.gui.GuiClass method)

 	init_histwin() (opeth.gui.GuiClass method)

 	init_logs() (in module opeth.logsetup)

 	
 	init_params() (opeth.gui.GuiClass method)

 	init_rawwin() (opeth.gui.GuiClass method)

 	init_spikewin() (opeth.gui.GuiClass method)

 	initgraph() (opeth.gui.GuiClass method)

 	itemClass (opeth.pgext.ChannelParameter attribute)

K

 	
 	keep_last() (opeth.colldata.Collector method)

L

 	
 	load_params() (opeth.gui.GuiClass method)

 	
 	LogFormatter (class in opeth.logsetup)

 	LogHandler (class in opeth.logsetup)

M

 	
 	main() (in module opeth.gui)

 	mainwin (opeth.gui.GuiClass attribute)

 	makeWidget() (opeth.pgext.ChannelParameterItem method)

 	max() (opeth.circbuff.CircularBuffer method)

 	MAX_CHANNELS_PER_PLOT (in module opeth.gui)

 	
 	MAX_PLOT_PER_SEC (opeth.gui.GuiClass attribute)

 	(opeth.spike_gui.SpikeEvalGui attribute)

 	MAX_TRIGGER_CHANNEL (in module opeth.gui)

 	min() (opeth.circbuff.CircularBuffer method)

 	more_than_two_continuous() (opeth.gui.GuiClass method)

N

 	
 	NEGATIVE_THRESHOLD (in module opeth.gui)

 	
 	NOF_SPIKEPLOTS (opeth.spike_gui.SpikeEvalGui attribute)

 	NOF_SPIKEPLOTS_PER_ROW (opeth.spike_gui.SpikeEvalGui attribute)

O

 	
 	onChangeTheme() (opeth.gui.GuiClass method)

 	onClearPlot() (opeth.gui.GuiClass method)

 	onClose() (opeth.gui.GuiClass method)

 	onLoadParams() (opeth.gui.GuiClass method)

 	onOpenSpikeWin() (opeth.gui.GuiClass method)

 	onParamChange() (opeth.gui.GuiClass method)

 	onResetParams() (opeth.gui.GuiClass method)

 	onSaveAsParams() (opeth.gui.GuiClass method)

 	onSaveParams() (opeth.gui.GuiClass method)

 	
 	OpenEphysEvent (class in opeth.openephys)

 	OpenEphysSpikeEvent (class in opeth.openephys)

 	opeth.circbuff (module)

 	opeth.colldata (module)

 	opeth.comm (module)

 	opeth.gui (module)

 	opeth.logsetup (module)

 	opeth.openephys (module)

 	opeth.pgext (module)

 	opeth.spike_gui (module)

P

 	
 	PARAMFNAME (in module opeth.gui)

 	PENWIDTH (opeth.spike_gui.SpikeEvalGui attribute)

 	plot() (opeth.spike_gui.SpikeEvalGui method)

 	populate_histwin() (opeth.gui.GuiClass method)

 	
 	populate_params() (opeth.gui.GuiClass method)

 	populate_rawwin() (opeth.gui.GuiClass method)

 	prev_trigger_ts (opeth.colldata.Collector attribute)

 	process_ttl() (opeth.colldata.Collector method)

 	publication (opeth.gui.Theme attribute)

R

 	
 	rawdata_curves (opeth.gui.GuiClass attribute)

 	rawdatawin (opeth.gui.GuiClass attribute)

 	
 	RERECORD (in module opeth.gui)

 	reset() (opeth.gui.TimeMeasClass method)

 	restore_params() (opeth.gui.GuiClass method)

S

 	
 	SAMPLES_PER_SEC (in module opeth.colldata)

 	samples_per_sec (opeth.colldata.Collector attribute)

 	save_params() (opeth.gui.GuiClass method)

 	send_event() (opeth.comm.CommProcess method)

 	send_heartbeat() (opeth.comm.CommProcess method)

 	set_drop_aux() (opeth.colldata.Collector method)

 	set_sampling_rate() (opeth.colldata.Collector method)

 	(opeth.colldata.DataProc method)

 	(opeth.spike_gui.SpikeEvalGui method)

 	set_threshold_levels() (opeth.gui.GuiClass method)

 	shape (opeth.circbuff.CircularBuffer attribute)

 	should_restore_params (opeth.gui.GuiClass attribute)

 	sigint_handler() (in module opeth.gui)

 	size() (opeth.circbuff.CircularBuffer method)

 	spike_bin_ms (opeth.gui.GuiClass attribute), [1]

 	
 	SPIKE_HOLDOFF (in module opeth.colldata)

 	spike_pos (opeth.gui.GuiClass attribute)

 	SPIKE_ROI_AFTER (opeth.spike_gui.SpikeEvalGui attribute)

 	SPIKE_ROI_BEFORE (opeth.spike_gui.SpikeEvalGui attribute)

 	spike_ts (opeth.gui.GuiClass attribute)

 	spikedetect() (opeth.colldata.DataProc method)

 	SpikeEvalGui (class in opeth.spike_gui)

 	spikeplotcurves (opeth.spike_gui.SpikeEvalGui attribute)

 	spikeplotpool (opeth.spike_gui.SpikeEvalGui attribute)

 	spikeplotpool_next (opeth.spike_gui.SpikeEvalGui attribute)

 	spikeplotpositions (opeth.spike_gui.SpikeEvalGui attribute)

 	spikerawcurves (opeth.spike_gui.SpikeEvalGui attribute)

 	spikes (opeth.colldata.Collector attribute)

 	SPIKEWIN (in module opeth.gui)

 	store_lastconfname() (opeth.gui.GuiClass method)

T

 	
 	Theme (class in opeth.gui)

 	threshold_levels (opeth.gui.GuiClass attribute)

 	tic() (opeth.gui.TimeMeasClass method)

 	timeas (opeth.gui.GuiClass attribute)

 	timecount (opeth.gui.TimeMeasClass attribute)

 	TimeMeasClass (class in opeth.gui)

 	timer_callback() (opeth.comm.CommProcess method)

 	timespent (opeth.gui.TimeMeasClass attribute)

 	
 	timestamp (opeth.colldata.Collector attribute)

 	timestart (opeth.gui.TimeMeasClass attribute)

 	timing_start (opeth.gui.GuiClass attribute)

 	toc() (opeth.gui.TimeMeasClass method)

 	TRIGGER_HOLDOFF (in module opeth.gui)

 	tsbuffer (opeth.colldata.Collector attribute)

 	ttl_range_ms (opeth.gui.GuiClass attribute)

 	ttlraw_curves (opeth.gui.GuiClass attribute)

 	ttls (opeth.colldata.Collector attribute)

U

 	
 	update() (opeth.gui.GuiClass method)

 	update_cfgboxtitle() (opeth.gui.GuiClass method)

 	update_channelcnt() (opeth.gui.GuiClass method)

 	update_disabled_channels() (opeth.gui.GuiClass method)

 	update_histograms() (opeth.gui.GuiClass method)

 	update_plotcolors() (opeth.gui.GuiClass method)

 	
 	update_plotstyle() (opeth.gui.GuiClass method)

 	update_samplingrate() (opeth.gui.GuiClass method)

 	update_spikewins() (opeth.gui.GuiClass method)

 	update_threshold_levels() (opeth.gui.GuiClass method)

 	update_ts() (opeth.colldata.Collector method)

 	uuid (opeth.comm.CommProcess attribute)

circbuff module

	
class opeth.circbuff.CircularBuffer(capacity, allocated, initial_shape, dtype=<class 'numpy.float64'>, append_axis=0, **kwargs)

	Bases: collections.abc.Sequence

Ring buffer implementation with continuous memory storage.

Appends/expands happen along specified axis.

The data is always stored continuously in the memory in a numpy array
targeted for quick “bulk” read access. As the elements get inserted at end
and read/released from the beginning the actual buffer slowly reaches the end
of the allocated space, when it needs to be moved to the start of the
allocated space to keep it continuous. Inserts are supported at the end only,
data removals (“drop data”) only at the beginning of the array.

Array in memory is not from [0..len(arr)), instead from some offset:
[self._left_index .. self._right_index), where self._right_index <= self._allocated and
self._right_index - self._left_index <= self._capacity.

Was tested for OE purposes only, other usage patterns may bring unexpected errors.

	Parameters

	
	capacity (int) – Max num of rows/cols along append_axis to be stored in the circular buffer.

	allocated (int) – Actual storage area for storing the continuous ring buffer.
Bigger allocated storage results in less data moves but more memory consumption.
Must be greater than capacity (depends on usage patterns).

	initial_shape (list(row,col,.)) – full array size to be allocated. Size must match allocated
in the append_axis direction.

	dtype (type) – data type to be stored

	append_axis (int) – axis in which direction data is appended to the already stored data.

	Raises

	ValueError – triggered if appends are not row/columnwise (axis > 1) - others were not tested yet

	
append(value)

	Insert an item at the end of the array.

Not an O(1) operation in case the new items would span over the end of the allocated space:
in this case the array contents are moved to the start of the allocated space first.

	Parameters

	value (dtype as specified during instantiation) – an array of values with the
expected shape (all dimensions must match initial_shape’s dimensions except the
dimension of append_axis).

	Raises

	BufferError – if number of items in array would be over capacity limit after the append

	
drop(nof_elements)

	Remove elements from the beginning of the array.

	Parameters

	nof_elements (int) – number of rows/cols/… along append_axis that should
be removed from the start of the array.

	Raises

	BufferError – if more elements are attempted to be released than present.

	
dtype

	Returns the data type for the array items

	
max()

	Return the maximum value.

	
min()

	Return the minimum value.

	
shape

	Returns the shape of the array currently stored. In a freshly created array
all dimensions except the append_axis will report the initial_shape; the
append_axis will report 0 as no items (rows, cols) available yet.

The array used for storing data is 0..allocated in the append_axis direction,
but the shape returns only the rows/cols currently available in that direction

	
size()

	Return capacity of array: as set in constructor. Available data count is accessible through len(),
free size is cb.size() - len(cb).

colldata module

Stores the collected raw data, gives functions to perform various things on it. Supported functionality:

	keep only a predefined amount of data (a window of the last n second of samples), dropping old data

	help in quick plotting of raw data (compress it for display)

	search for spikes over threshold

Data, TTL and timestamp storage happens in Collector class, and
Spike detection and data compression for raw plotting are performed in DataProc.

	
class opeth.colldata.Collector

	Bases: object

Data storage class for raw analog data, timestamps and event timestamps.

	
databuffer

	The 2D data storage, each row representing a channel, each column a sample.

	Type

	2D CircularBuffer

	
tsbuffer

	Timestamp buffer storing 1 time stamp value for each data column.

	Type

	1D CircularBuffer

	
timestamp

	Sample number updated on timestamp event or when received explicitly with a set of data.

	
spikes

	Spike positions - stored if spikes are sent by OE.

	Type

	deque

	
ttls

	TTL positions as sent by OE.

	Type

	deque

	
samples_per_sec

	Sampling rate.

	Type

	int

	
prev_trigger_ts

	Used to detect backward jumping timestamps in TTL stamps.

	Type

	defaultdict(int)

	
drop_aux

	Adjusted through set_drop_aux(), affects whether auxiliary data (the
3 gyroscope channels) is to be filtered or not.

	Type

	bool

	
add_data(data)

	Append a new chunk of analog channel measurements to the end of the storage array.

Auxiliary channel data (gyroscopes) are automatically removed if 35 or 70 channels
were received (ch 33-35 or ch 65-70) and drop_aux is True.

Data sampling timestamps are calculated for each sample position based on the last received
timestamp (stored in timestamp and the sample rate defaults to SAMPLES_PER_SEC.

	Parameters

	data – input data received from OE. Multiple channels, multiple samples.
(E.g. 35 rows/channels of 640 floating point samples.) Unit value is supposed to be in uV.

	
add_spike(spike)

	Store a new spike event. (Not used currently.)

	
add_ttl(ttl)

	Store a new TTL event.

All TTLs are stored regardless of the selected TTL channel,
the TTL processing happens in process_ttl().
This code assumes the timestamp and the sample count are the same.

	
channel_cnt()

	
	Returns

	the number of channels based on the rows of data in the databuffer.

	
drop_before(timestamp)

	Drop old data which is not required for any of the various displays.

	
get_data()

	Accessor function for the databuffer.

Obsolete. Former version could return the proper structure depending on which
data storage backend was used. Now one may use databuffer directly as no other structure is configurable.

	
get_ts()

	
	Returns

	the timestamp buffer tsbuffer.

	
has_data()

	
	Returns

	true if there is (already/still) data in the buffers.

	
keep_last(seconds=None, samples=None, **kwargs)

	Convenience wrapper function for drop_before.

	Parameters

	
	seconds (int) – length of samples to be kept in buffer (in number of seconds). If given, it takes precedence over samples.

	samples (int) – number of samples to be kept in buffer.

	
process_ttl(start_offset=-0.02, end_offset=0.05, ttl_ch=None, trigger_holdoff=0.001, **kwargs)

	Process a TTL (event), return data and timestamp around event on success
or (None, None) otherwise - using first TTL from ttl_ch.

Drops all TTLs silently from channels other than ttl_ch.
Works on data accumulated by add_data() calls (dataarray numpy array)
and TTLs from add_ttl() calls (self.ttls list). Too frequent pulses are filtered
by trigger_holdoff

	Parameters

	
	start_offset (float) – TTL-relative start offset in seconds, typically a small negative value to return data
collected right before the TTL signal

	end_offset (float) – TTL-relative end offset in seconds specifying end of data ROI

	ttl_ch (int) – channel whose TTL events are to be processed as trigger

	trigger_holdoff (float) – holdoff time in seconds until no new triggers are processed
(to protect the system against trigger bursts in case of broken cabling etc.)

	Returns

	2D numpy array of data (one row per channel) around the TTL [-start_offset .. +end_offset],
1D numpy array of timestamps (same number of columns as data).
Timestamps are actually sample number (sort of).

	
set_drop_aux(should_drop)

	Update AUX channel settings (whether we’d like to search for spikes on them or not).

	
set_sampling_rate(sampling_rate)

	

	
update_ts(timestamp)

	Required for old OE version that sent timestamps separately as events,
kept it for backward compatibility.

	Parameters

	timestamp (int) – stored in timestamp for later timestamp interpolation calculations
when data arrives.

	
class opeth.colldata.DataProc(collector=None, drop_aux=False)

	Bases: object

Utility functions to handle collected data

	Parameters

	
	collector (Collector) – data on which the operations are performed. Only a reference,
part of data to operate on is passed over to each function.

	drop_aux (bool) – sets whether in a 35 or 70 analog channel case is a 32+3 (or 64+6) setup
with extra 3 (or 6) channels unimportant and to be dropped or important and are to be
parsed for spikes.

	
autottl(data, timestamps, base_timestamp, ch=0, threshold=0.5, **kwargs)

	Generate TTL signals based on threshold in a channel of data.

Playback from file in OE did not support TTL event playback, so it was necessary to generate
them somehow.

Not used in real situations.

	Parameters

	
	ch – channel to run thresholding on for TTL signals

	threshold – threshold level

	base_timestamp – TTL timestamp relative to start of data packet timestamp (in samples)
Probably unnecessary, just kept for emulating OE TTL data.

	
compress(data, rate, timestamps=None)

	Compress a 2D matrix column-wise by keeping the min and max values of the compressed chunks.

Used by real time raw display to reduce number of points to be plotted.
The displayed set tries to plot a sawtooth-style signal touching both
min and max values of the original signal of the given range.

	Parameters

	
	data (2D CircularBuffer) – array to be compressed.

	rate (int) – required compression rate.

	timestamps (1D CircularBuffer) – timestamp axis is compressed the same way as vertical

	
set_sampling_rate(sampling_rate)

	

	
spikedetect(data, timestamps, threshold=0.5, rising_edge=False, disabled=[])

	Detect spikes based on threshold level.

Spike detection: from first continouos block of data exceeding threshold
select maximal [minimal in case of negative threshold] value as spike position
and don’t search for spikes in the SPIKE_HOLDOFF time after crossing the threshold level.

Threshold method is selected by SPIKE_THRESHOLD_BELOW setting (True by default).

	Parameters

	
	threshold (scalar or vector) – must have the same number of channels as data.

	data (ndarray e.g. CircularBuffer) – samples on which spike filtering will be performed.

	timestamps – time stamps accompanying the data samples

	rising_edge (bool) – false if threshold level should be considered a negative threshold
and falling edge is to be detected

	Returns

	a list of spike positions (sample index) and another list of the same position as timestamp.

	
opeth.colldata.EVENT_ROI = (-0.02, 0.05)

	Region of interest in seconds (+-timestamp range in seconds - neighbourhood of a event that is investigated for spikes)

	
opeth.colldata.SAMPLES_PER_SEC = 30000

	Sampling frequency in Hz

	
opeth.colldata.SPIKE_HOLDOFF = 0.00075

	Dead time / censoring period (seconds)

comm module

Communication interface between Open Ephys and Python using ZeroMQ for networking and JSON message format.

Sends periodic heartbeat signals to the server, uses collector.Collector
to store data received over network.

Heavily based on Francesco Battaglia’s sample implementation.

	
class opeth.comm.CommProcess(dataport=5556, eventport=5557)

	Bases: object

ZMQ communication process - stores data, called periodically from GUI process.

	
context

	Networking context for ZeroMQ

	Type

	zmq.Context

	
dataport

	TCP port of Open Ephys plugin for data reception

	Type

	int

	
eventport

	TCP port of Open Ephys plugin for events

	Type

	int

	
data_socket

	ZMQ subscriber for incoming data

	Type

	zmq.SUB socket

	
event_socket

	ZMQ REQ interface

	Type

	zmq.SUB socket

	
collector

	Data storage

	Type

	collector.Collector

	Parameters

	
	dataport (int) – Open Ephys ZMQ plugin’s data port, default: 5556

	eventport (int) – Open Ephys ZMQ plugin’s event port, default: 5557

	
add_data(n_arr)

	Append data to our data collector.

	
add_event(event)

	Add/update event or timestamp.

	
add_spike(spike)

	Add spikes. Currently not used.

	
connect()

	Initial connection to ZMQ plugin.

Starts polling the interfaces.

	
send_event(event_list=None, event_type=3, sample_num=0, event_id=2, event_channel=1)

	
Note

Not used just for testing.

	
send_heartbeat()

	Send heartbeat message to the event port so the ZMQ plugin can list our client.

	
timer_callback()

	Called periodically from GUI to process network messages.

All the most important network processing happens here.

	Sends heartbeat messages every two seconds.

	Collects data.

	Processes incoming events.

	
uuid = None

	unique ID used in heartbeat

gui module

Main class for setting up user interface and instantiate network connections.

	
opeth.gui.AUTOTRIGGER_CH = None

	Set to None to disable, otherwise TTL pulses will be generated if given channel is over threshold

	
opeth.gui.CHANNELPLOTS_ANTIALIASED = True

	More professional display for per channel plots, but less visible

	
opeth.gui.CHANNELPLOTS_VERTICAL_OFFSET = 0.1

	When histogram are presented with lines per channel, adjust the way they are plotted.

	
opeth.gui.CHANNELS_PER_HISTPLOT = 4

	Channels per tetrode to be combined in histogram

	
opeth.gui.COLUMN_INCREMENTS = [3, 8, 12, 20, 25, 30, 42, 64, 90, 110, 120, 130, 1000]

	A value in a given index means maximum number of plots displayed for the index number of columns

	
opeth.gui.DEBUG = False

	Enable or disable debug mode

	
opeth.gui.DEBUG_FPS = False

	Enable frame per sec debug prints

	
opeth.gui.DEBUG_FPSREPORT_PERIOD = 5

	FPS debug print update frequency

	
opeth.gui.DEBUG_TIMING = False

	Enable timing prints

	
opeth.gui.DEFAULT_INI = 'default.ini'

	Config file name defaults

	
opeth.gui.DEFAULT_SPIKE_THRESHOLD = 3e-05

	Spike threshold set as default parameter if no ini file found.

	
class opeth.gui.GuiClass

	Bases: object

Main GUI handling class.

Creates windows:

	Main histogram window with parameters.

	Raw data window with real time plotted continuous scrolling waveform for overview.

	Debug window if DEBUG is True.

	Spike analysis windows using spike_gui.SpikeEvalGui when corresponding button is pressed.

At startup as long as no data is present the histogram windows are not populated as the input data
channel count is not known.

The main loop performing the most important periodic operations is in update()
method, calling e.g. comm.CommProcess.timer_callback() to collect data and based on that
update plot data.

	
rawdata_curves

	Top part waveforms of raw analog window

	Type

	list

	
ttlraw_curves

	Bottom part waveforms of raw analog window

	Type

	list

	
cp

	Interface and data collector to OE

	Type

	comm.CommProcess

	
dataproc

	Data processor instance working on cp’s colldata.Collector data

	Type

	colldata.DataProc

	
mainwin

	Main window with histogram and parameter setup window

	Type

	QtGui.QMainWindow

	
rawdatawin

	Real time raw analog data display with a continuously scrolling part and a
TTL-aligned snapshot.

	Type

	pyqtgraph.GraphicsWindow

	
debugwin

	Opened only if DEBUG is True, displays some internal variables for debugging

	Type

	QtGui.QWidget

	
spike_bin_ms

	Histogram bins, one row per channel, each row contains
ttl_range_ms + 1 number of bins for collecting spike offsets relative to event.

	Type

	2D np.ndarray

	
ttl_range_ms

	TTL range specified by start and end value in event_roi
(warning: if HISTOGRAM_BINSIZE modified, it is not ms any more!)

	Type

	int

	
event_roi

	Region of interest around event ([start, end] values in second around
TTL pulse for spike search region and plotting e.g. [-0.02, 0.05] for default 20 ms before, 50 ms after)

	Type

	list of two float elements

	
configfname

	Name of config file for parameter setup storage. PARAMFNAME points to the file
from where its initial value is read during program startup.

	Type

	str

	
threshold_levels

	One row per tetrode, threshold level in uV.
Same sign both for negative and positive spikes as in GUI, will be adjusted afterwards for spike detection.

	Type

	np.ndarray of floats

	
histplots

	Histogram plot collection for data updates - each element is a
collection of per-channel histograms for a given tetrode.

	Type

	list of lists of plots

	
MAX_PLOT_PER_SEC = 4

	Perfomance limit through earliest_hist_plot

	
change_event_roi(new_roi, clear_plot=True, **kwargs)

	Change region of interest around event (spike search range) and
update plots.

	
clear_plot()

	Clear all displayed histograms

	
convert_strlist_to_ints(str_in)

	Convert a text entry of disabled channels to an integer list.

	Parameters

	str_in (str) – input string in the format 1-4, 17, 30-33.

	Returns

	a list of integers like [1,2,3,4,17,30,31,32,33].

	
disabled_channels = None

	A list of disabled channels starting with 0

	
display_brushcolors = None

	Histogram colors

	
display_linecolors = None

	Channel plot (line) colors

	
display_theme = None

	display theme

	
downsampling_rate = None

	Downsampling rate is calculated from sampling rate, target is 1kHz for raw data window

	
earliest_hist_plot = None

	Next histogram update time for performance cap

	
earliest_rawttl_plot = None

	Next raw analog TTL-aligned display time - lower window update rate limit

	
force_update = None

	Keep track of programmatic parameter changes to prevent infinite loops.

	
init_debugwin()

	Open a new debug window - called only if DEBUG is enabled.

	
init_histwin()

	Initialize main histogram window and parameters with defaults.

Actual display will be updated in populate_histwin() once number
of channels/channels per tetrode is known.

	
init_params(paramcontainer, reset=False, **kwargs)

	Prepare parameter setup part of main histogram window.

	
init_rawwin()

	Real time display of current waveform for visible feedback even when signal thresholds may be off.

	
init_spikewin()

	Single channel analysis window

	
initgraph()

	Called at startup to set up the main window with the parameter setup
and the raw data window.

Only a placeholder text is displayed instead of histogram plots until
the first set of data arrived and channel count becomes known.

	
load_params()

	Load parameters from config file configfname

Called after file selection dialog when Load button pressed, and also
when program is first loaded.

	
more_than_two_continuous(intlist)

	In order to reduce a string of ‘1, 2, 3, 4’ to ‘1-4’ return the longest
series of numbers incrementing by one at the beginning of an intlist.

Helper function for update_disabled_channels(), the opposite of
convert_strlist_to_ints() (partially).

	Parameters

	intlist (list) – a list of integers

	Returns

	either the first element of intlist or a list of elements if
more than two consecutive numbers were incrementing by one.

	
onChangeTheme()

	

	
onClearPlot()

	Manually clear plots on button press.

	
onClose(event)

	Handler for closeEvent of main window (histogram window), should close all other windows
before closing the main window.

	
onLoadParams()

	

	
onOpenSpikeWin()

	Open new spike analysis window on button press.

	
onParamChange(param, changes)

	Called on any parameter change.

	
onResetParams()

	Remove saved parameters and reinit parameter setup. Called when
corresponding button was pressed.

	
onSaveAsParams()

	Store parameter setup in file. Called when corresponding button pressed.

	
onSaveParams()

	

	
populate_histwin()

	Create an array of dockable/movable histograms.
The layout is determined by the number of necessary plot windows and the
COLUMN_INCREMENTS variable.

	
populate_params()

	Update parameter setup after channel count is known.

	
populate_rawwin()

	Create as many raw analog display curves as necessary based on nChannels

	
restore_params()

	Startup code performing parameter restoration.

	
save_params()

	Save parameters to configfname

Called when Save or Save as buttons pressed.

	
set_threshold_levels(value)

	Parameter setup: update all the tetrode threshold level values simultaneously.

	
should_restore_params = None

	Automatic parameter reload should happen only on startup.

	
store_lastconfname(fname)

	Store configfname in file PARAMFNAME and update config box display to
show new file name.

	
fname

	Path to new file - if left empty then will default to DEFAULT_INI.

	Type

	str

	
timeas = None

	Profiling class

	
timing_start = None

	internal elapsed time measurement scheduler

	Type

	Debug

	
update(**kwargs)

	The main loop, processes input data and updates plots. Called periodically from a Qt timer.

On very first round with actual data present it calls update_channelcnt() to
create the necessary amount of histogram plots.

Periodically calls

	comm.CommProcess.timer_callback() to fetch new data

	colldata.Collector.keep_last() to drop old data

	colldata.Collector.process_ttl() to fetch region of interest around TTL

	colldata.DataProc.compress() to reduce complexity of the real time plot

	colldata.DataProc.spikedetect() to find spikes

	update spike analysis windows update_spikewins()

and updates real time plot data via rawdata_curves and ttlraw_curves

	
spike_bin_ms

	Histogram bins containing one row per channel of spike event
counter bins (accumulating);
first item per row contains the bin corresponding to start of trigger area (event_roi [0])
and last one to the end (event_roi [1])

	Type

	2D numpy array

	
data_at_ttl

	Each row contains the same number of samples from different channels

	Type

	2D numpy array

	
data_ts

	Timestamps of data_at_ttl samples around TTL
(in seconds, used for binning)

	Type

	1D numpy array

	
data_ts_0

	Same array as data_ts, start offset removed (timestamp of first sample is 0),
used for histogram generation (binning)

	Type

	1D numpy array

	
data_ts_roi

	TTL timestamps with actual TTL event aligned to 0 (one ts for each
sample - samples start earlier than TTL), used for plotting the time scale

	Type

	1D numpy array

	
spike_pos

	each internal list contains sample index of spike events for a given channel
(events over threshold, disabled channels not included)

	Type

	list of lists

	
spike_ts

	Same layout as spike_pos, contains the actual timestamps
of spikes for plotting x axis

	Type

	list of lists

	
update_cfgboxtitle()

	Update config box title to show the current config file, reduce length if necessary.

	
update_channelcnt(nChannels)

	Called when number of channels becomes known or changes.

Update the necessary display elements (number of histogram plots etc).

	Parameters

	nChannels (int) – number of input channels (as detected in first chunk of data received from OE)

	
update_disabled_channels()

	Called when list of disabled channels is entered; it parses
the input string to understand and abbreviate series of numbers.

Uses convert_strlist_to_ints() and reproduces the string
with more_than_two_continuous() in order to verify syntax
and to combine input like 1, 2, 3 to 1-3.

	
update_histograms()

	Update displayed histogram plots.

Types of histogram plots available:

	
	the normal histogram with e.g. 4 channels per tetrode combined

	into a single histogram, channels indistinguishable

	
	same histogram but each channel with its own colour, a histogram

	bar consisting of Ch1+Ch2+Ch3+Ch4 separated by colour
(same outline as in previous case just 4 colours instead of 1)

Trick for display: 4 plots displayed,
ch1 in front, ch1+ch2 aggregated behind etc.

	
	per channel: lines instead of bar graphs to make it possible to

	distinguish between overlapping elements

	
update_plotcolors()

	Called when channels get disabled - no need to remove plots

	
update_plotstyle()

	If the plot style changes from one of the histogram plots to channel plot
or vica versa, the channel colors are to be updated.

	
update_samplingrate(sampling_rate, clear_plot=False)

	

	
update_spikewins(data_ts, data, spike_ts, spike_pos)

	Perform an update on spike windows.

	
update_threshold_levels()

	Update the internal threshold levels based on the UI parameters.

	
opeth.gui.HIDE_AUX_CHANNELS = True

	Whether AUXiliary channels (in 35 channel case last 3 channels, in 70 channel case last 6) should be omitted.

	
opeth.gui.HISTOGRAM_BINSIZE = 0.001

	Histogram bin size in seconds

	
opeth.gui.MAX_CHANNELS_PER_PLOT = 8

	Maximal number of channels for a given histogram window/polytrode

	
opeth.gui.MAX_TRIGGER_CHANNEL = 8

	TTL trigger channel is up to 8 for a BNC expansion board

	
opeth.gui.NEGATIVE_THRESHOLD = True

	Inverted signal - positive threshold value in params mean negative threshold with falling edge detection

	
opeth.gui.PARAMFNAME = 'lastini.conf'

	Last used ini file name stored in a file, will default to DEFAULT_INI if missing

	
opeth.gui.RERECORD = False

	True if data is to be saved for debug purposes

	
opeth.gui.SPIKEWIN = False

	Set to True if one spike analysis window is to be opened at start.

	
opeth.gui.TRIGGER_HOLDOFF = 0.001

	Trigger holdoff in seconds

	
class opeth.gui.Theme

	Bases: enum.Enum

An enumeration.

	
dark = 0

	

	
publication = 1

	

	
class opeth.gui.TimeMeasClass

	Bases: object

Performance monitoring/profiling class. (Just for development.)

Maintains a dictionary of elapsed times and number of calls with separate identifier strings
to make it possible to measure multiple overlapping time segments.

	
dump()

	Display all timer results.

	
reset()

	Restart all timers.

	
tic(idstr)

	Start timer.

	Parameters

	idstr (str) – Starts timer for given string id. Will be terminated by toc().

	
timecount = None

	Number of measurements collected in timespent (for averaging)

	
timespent = None

	Measurement array for elapsed time

	
timestart = None

	Last measurement’s start time (initialized in tic())

	
toc(idstr)

	Stop timer, increment corresponding timer arrays.

	Parameters

	idstr (str) – Index string of timespent and timecount.

	Returns

	elapsed time since last tic in seconds

	
opeth.gui.main()

	

	
opeth.gui.sigint_handler(*args)

	Handler for the SIGINT signal in order to be able to quit pressing CTRL+C in console.

logsetup module

Logging setup - file and console logs.

Logger is available through logging.getLogger("logger").

	
class opeth.logsetup.FileLogFormatter(fmt=None, datefmt=None, style='%')

	Bases: logging.Formatter

Initialize the formatter with specified format strings.

Initialize the formatter either with the specified format string, or a
default as described above. Allow for specialized date formatting with
the optional datefmt argument. If datefmt is omitted, you get an
ISO8601-like (or RFC 3339-like) format.

Use a style parameter of ‘%’, ‘{‘ or ‘$’ to specify that you want to
use one of %-formatting, str.format() ({}) formatting or
string.Template formatting in your format string.

Changed in version 3.2: Added the style parameter.

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class opeth.logsetup.LogFormatter(fmt=None, datefmt=None, style='%')

	Bases: logging.Formatter

Initialize the formatter with specified format strings.

Initialize the formatter either with the specified format string, or a
default as described above. Allow for specialized date formatting with
the optional datefmt argument. If datefmt is omitted, you get an
ISO8601-like (or RFC 3339-like) format.

Use a style parameter of ‘%’, ‘{‘ or ‘$’ to specify that you want to
use one of %-formatting, str.format() ({}) formatting or
string.Template formatting in your format string.

Changed in version 3.2: Added the style parameter.

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class opeth.logsetup.LogHandler(stream=None)

	Bases: logging.StreamHandler

Initialize the handler.

If stream is not specified, sys.stderr is used.

	
handle(record)

	Conditionally emit the specified logging record.

Emission depends on filters which may have been added to the handler.
Wrap the actual emission of the record with acquisition/release of
the I/O thread lock. Returns whether the filter passed the record for
emission.

	
opeth.logsetup.in_ipython()

	

	
opeth.logsetup.init_logs(logfile=None, loglevel=10, **kwargs)

	

	circbuff module

	colldata module

	comm module

	gui module

	logsetup module

	openephys module

	pgext module

	spike_gui module

openephys module

	
class opeth.openephys.OpenEphysEvent(_d, _data=None)

	Bases: object

Open Ephys events generic container for e.g. timestamps or TTLs.

	Notes: New version of OE does not seem to send timestamp events.

	OE-detected spikes are stored in the more specific OpenEphysSpikeEvent class.

Mostly based on Francesco Battaglia’s code.

	Parameters

	
	_d – json-extracted dictionary with which to initialize the object

	_data – binary content of the rest of the message (e.g. undecoded timestamp as received)

	
event_types = {0: 'TIMESTAMP', 1: 'BUFFER_SIZE', 2: 'PARAMETER_CHANGE', 3: 'TTL', 4: 'SPIKE', 5: 'MESSAGE', 6: 'BINARY_MSG'}

	

	
class opeth.openephys.OpenEphysSpikeEvent(_d, _data=None)

	Bases: object

Storage class for spike events received from OE.

	
opeth.openephys.generate_ttl(timestamp, sample_num=0)

	Debug code to auto-generate TTLs based on threshold level in case of file playback.

pgext module

PyQtGraph extensions.

	
class opeth.pgext.ChannelParameter(*args, **kargs)

	Bases: pyqtgraph.parametertree.Parameter.Parameter

The parameter setup entries for channels are created using this class and
the underlying ChannelParameterItem.

	
itemClass

	alias of ChannelParameterItem

	
class opeth.pgext.ChannelParameterItem(param, depth)

	Bases: pyqtgraph.parametertree.parameterTypes.WidgetParameterItem

Channel parameters are extended float values displaying plot color as well.

	
colorChange()

	

	
makeWidget()

	Extended SimpleParameter widget - float values only, additionally displaying
corresponding channel’s color.

	Returns

	widget with a color button and a spinbox for setting threshold value

	
class opeth.pgext.DisabledMouseViewBox(*args, **kwds)

	Bases: pyqtgraph.graphicsItems.ViewBox.ViewBox.ViewBox

Mouse is disabled in histogram plots using this pg viewbox.

spike_gui module

	
class opeth.spike_gui.SpikeEvalGui(sample_rate)

	Bases: object

Spike evaluation plots for a given channel.

Three main areas: top part is a full timeline plot displaying the original
signal with the detected spikes overlayed in different color, and the
bottom part is a per-spike grid of plots displaying the detected spikes
individually. On the right side parameters can be adjusted.

GUI initialization

	
spikeplotpool

	List of plots in the grid (not used)

	Type

	list

	
spikeplotcurves

	Spike waveforms in spikeplotpool used for setData

	Type

	list

	
spikeplotpositions

	Marker for the detected threshold crossing

	Type

	list

	
spikerawcurves

	Curves to overlay the top display with the color of specific spikes

	Type

	list

	
spikeplotpool_next

	Index of current spike in the given round of plots
(for color and plot window cycling)

	Type

	int

	
COLORS = ['1f78b4', 'b2df8a', '33a02c', 'fb9a99', 'e31a1c', 'fdbf6f', 'ff7f00', 'cab2d6', 'a6cee3']

	

	
MAX_PLOT_PER_SEC = 5

	Continuous spike window refresh rate (if “Update only on spike” not selected)

	
NOF_SPIKEPLOTS = 9

	Bottom spike window grid settings

	
NOF_SPIKEPLOTS_PER_ROW = 3

	Bottom spike window grid settings

	
PENWIDTH = 2

	Plot draw width

	
SPIKE_ROI_AFTER = 0.001

	in seconds after peak of spike

	Type

	Bottom display limit

	
SPIKE_ROI_BEFORE = 0.0003

	in seconds before peak of spike

	Type

	Bottom display limit

	
close()

	Called when main window is closed.

	
earliest_plot = None

	timestamp until new plot is created to limit update frequency

	
plot(data_ts, data, spike_ts, spike_pos, threshold_levels)

	Plot a set of data and corresponding spikes on the selected channel.

	Parameters

	
	data_ts – timestamps

	data – data to plot - only the selected channel will be plotted

	spike_ts – timestamps where spikes were detected by colldata.DataProc.spikedetect().

	spike_pos – spike positions as detected by colldata.DataProc.spikedetect().

	threshold_levels – per channel threshold level for plotting

	
set_sampling_rate(sampling_rate)

	

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/gui_main.png
Clar plot

onfig: defauit.i

time rel. to event (ms) me rel. to event (ms) ke time rel. to event () fime rel. to event (ns)

time rel. to event (ms) me rel. to event (ms) ke time rel. to event () e time el to event (ms)

Tetrode 10
Tetrode 12

time rel. to event (ms) Spike time rel. to event (ms) time rel. to event (ms) time rel. to event (ms)

Tetrode 13
Tetrode 14
Tetrode 15
Tetrode 16

N

£ E] TR E

Spike time rel. to event (ns) Spike time rel. to event (ns) Spike time rel. to event (ns) Spike time rel. to event (ns)

_images/gui_params.png
Clear plot | | Tnvert colours | |Open new spike win

Config:
Save Save as Load Reset

Parameter Value

Sampling rate 30Kz

Event trigger channel 1

Channels perplot 4

Disabled channels 25,8

ROl before event -20ms

ROI after event 50ms

Histogram color aggregate =)

Spike threshold 30 v

v
Ch#1 (Tetrode#1): | M 30 pV
Ch#2 (Tetrode#1): |3 30 pV
Ch#3 (Tetrode#1): |3 30 vV
Ch#4 (Tetrode#1): |3 30 pV
Ch#5 (Tetrode#2): |3 30 pV
Ch#6 (Tetrode#2): | 30 pV
Ch#7 (Tetrode#2): | 30 pV
Ch#8 (Tetrode#2): |3 30 vV
Ch#9 (Tetrode#3): | M 30 pV

_images/dataflow.png
Open Ephys — OPETH data flow overview

OE ZMQ plugin comm.py colldata.py
CommProcess Collector
ey
| data storage: 1 list!
1 N
™M 1 and 2 CircularBuffers;
data gocket i !
format) - 1 1 rocess TTLs: trim
ts with t tal add_ttl process_ttl(; P
—p &ven (:'g 11'1?85 b (): P@ i ! input data to region of
timestamp ! listof TTL tstamps T gets0 > interest around TTL,
y 1 i recalc timestamps so
start timestamp i [T get_datap ®{TTL is at 0 ms for plots
+ 2D array of timestamps =l

and response

data samples

heartbeat ZMQ
processhg <_evenl socket

DataProc

per sample

[———

(_ Histogram display

data
(n channels)

*oompress() *spikedeﬁe

Plot compressor
n*30K—n*1K

Spike detector

fct()

f

W Histogram update

"Analysis window(s)
per channel

—»{ Raw analog plots

_images/oe_plugins.png
File &dit View Help
PROCESSORS

SINKS

Arduino Output
Spike Viewer
Event Broadcaste
LFP Viewer

Pulse Pal

@ Rhythm FPGA

. Common Avg Ref

. Bandpass Filter

. Splitter

SAMPLE RATE AUDID OUT DR

GAIN (%)

@ Spike Detector

o e onre @

LOW CUT:

AFFECTED

LATENGY: 21 Ms

> ® 0 min O s

LFP VIEWER

0 % Display Subproc.

Sample Rate: 30000

SPIKE VIEWER

_images/spike_view.png
Raw data

offset from trigger (ns)

spie #6

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to OPETH’s documentation!

 		
 Getting started

 		
 Quickstart

 		
 Installation

 		
 Dependencies

 		
 Running from sources

 		
 Setting up python environment with conda

 		
 Setting up python environment with pip

 		
 Using OPETH

 		
 Connecting OPETH to Open Ephys

 		
 OPETH graphical interface

 		
 Online Peri-event Time Histogram (main window)

 		
 Raw data window

 		
 Spike analysis window

 		
 Spike detection

 		
 Architecture overview

 		
 Data acquisition: Open Ephys ZMQ plugin

 		
 Open Ephys - OPETH interface

 		
 OPETH GUI overview

 		
 Histogram window

 		
 Raw analog data window

 		
 Spike analysis window

 		
 Logging

 		
 Configuration

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

